
AD-A19 376 AGGREGTES IN THE TEMPORAL
QUERY LAGUGE TGUEL(U)NORTH CAROLINA UNIV AT CHAPEL HILL DEPT OF COMPUTER

SCINC R1 (NDRS E1L-7JU 7UC-E3S1

UNCLRSSIFIED NOI4-06-K-0690 F/G 12/5 L

smmhhhhhhhhhhl

111.0 LO Q
L 1j.6

Lm 1112
DIIII.-25 ii'. 11I6

S~ S w w w - .

TD 11 fILE G?'

The TEMPIS Project

00

bAggregates in the Temporal Query Language TQuel

Richard Snodgrass, Santiago Gomez, and Ed McKenizfOPT

July 27, 1987 C 2 1 97

Contract N00014-86-K-0680 D

Abstract

This paper defines aggregates in the temporal query language TQuel and provides their formal
semantics in the tuple relational calculus. A formal semantics for Quel aggregates is defined in the
process. Multiple aggregates; aggregates appearing in the where, when, valid, and as-of clauses;
nested aggregation; and instantaneous, cumulative, moving window, and unique variants are sup-
ported. These aggregates provide a rich set of statistical functions that range over time, while
requiring minimal additions to TQuel and its semantics.

TEMPIS Document No. 16

.5.

Copyright © 1987 University of North Carolina

1%

Department of Computer Science
University of North Carolina

Chapel Hill, NC 27514

5.. .b .

Table of Contents

1. AggregatesIn Quel ... 1
L.I. Informal Specification of Quel Aggregates ... I
1.2. Semantics of the Quel Retrieve Statement.. 3
1.3. Adding Aggregates to Tuple Relational Calculus 4
1.4. Unique Aggregation.. 8
1.5. Multiple Aggregation .. 9
1.6. Aggregates in the Outer Where Clause ... 9
1.7. Nested Aggregation .. 9
1.8. Expressions in Aggregates .. 10
1.9. Summary ... 10

2. Temporal Aggregates in TQuel .. 12
2. 1. Adding Aggregates to TQueI ... 15
2.2. Cumulative versus Instantaneous Aggregates .. 19
2.3. New Aggregates ... 22
2.4. More Examples .. 23
2.5. Defaults .. 27

3. Tuple Calculus Semantics of TQuel Aggregates ... 28
3. 1. Review of TQuel Semantics... 28
3.2. New TQuel Aggregates.. 30
3.3. The Constant Predicate .. 32
3.4. Aggregates in the Target List ... 34
3.5. Unique Aggregation ... 40)
3.6. Multiple Aggregation.. 40
3.7. Aggregates in the Outer Where Clause... 41
3.8. Nested Aggregation.. 41
3.9. Aggregates in the Other Outer Clauses... 42

*4. Related Work.. 43

5. Conclusion ... 47

Acknowledgements ... 47 _j

References...................... ... 48

-*Appendix: Syntax Summary.. 49

Table of Examples

Example 1: How many faculty members are there in each rank?7 2

Example 2. How many faculty members and different ranks are there? 3

Example 3: One modification of Example 1 10

Example 4:. Another modification of Example 1 ... 10

Example 5: What was Jane's rank when Merrie was promoted to Associate?......................... 14

Example 6: Example 1 on an historical relation 15

Example 7: How many faculty members were there each time a paper was sub-
mitted to ajournal? ... 16

Example 8: A third modification of Example 1 .. 17

Example 9: Who made a salary in June, 1981 that exceeded the maximum salary
made in June, 1979? ... 19

Example 10: Various combinations of unique and window sizes 20

Example 11: Who was maing the second smallest salary, and how cnuch was it,
during each period of time prior to 1980P... 23

Example 12: Who were the professors hired into or promoted to a rank while the
first faculty member ever in that rank had not yet been promoted?7 23

Example 13: How many different salary amounts has the department paid its
members since its creation until 1981?7... 24

Example 14: Given the above set of experimental data, how equally spaced are
the observations in time, and how fatst is the yield growing per year? 25

Example 15: A modification of Example 14 .. 26

Example 16: Example 15 on a quarterly basis .. 26

HI

Aggregate operators in query languages compute a scalar value from a collection of tuples in a rela-

tional database. Most commercially available relational database management systems (DBMSs) provide

several aggregate operations [Daze 1983, IBM 1981, Ullman 1982]. Recently attention has been focussed

on temporal databases (TDBs) that represent the progression of states of an enterprise over time. We have

developed a new language, TQuel (Temporal QUEry Language), to query a TDB [Snodgrass 1987]. TQuel

is a derivative of Quel [Held et al. 1975], the query language for the Ingres DBMS (Stonebraker et al.

1976]. TQuel was designed to be a minimal extension, both syntactically and semantically, for that

language. Since Quel is fairly comprehensive in its support of aggregates, a goal in the TQuel design was

to extend those aggregates to operate over temporal relations.

This paper defines and formalizes aggregates in TQuel. We begin by developing a formal semantics

for Quel aggregates. An intuitive introduction to the TQuel aggregates is given in Section 2. Section 3 is

devoted to a formal semantics of TQuel aggregates. The final section compares TQuel aggregates with

those of several other query languages supporting time. Throughout the paper, a fixed-width font is used

for operators in the query language (e.g., count); a bold, fixed-width font is used for keywords (e.g.,

year); and italics is used for functions in the formal semantics (e.g., count).

1. Aggregates In Quel

In this section we present a complete semantics for the Quel aggregates, as a convenient point of

reference for the TQuel semantics to be developed in Section 3. An informal specification for aggregates is

given, followed by a formal semantics of the retrieve statement with aggregates in the Quel language.

1.1. Informal Specification of Quel Aggregates

The Quel operations for aggregation are
count The number of values that exist for a given attribute in a relation. Since every attribute has

exactly one value in each tuple, this operator yields the same result on all attributes of a relation.
any An indicator of whether there exists at least one tuple in a relation. It returns a 1 if the relation is

non-empty and 0 otherwise.

sum The sum of the values present for a given attribute. This operator can be computed only on a
numeric attribute.

avg The average, or arithmetic mean, of the values present for a given attribute. The average is
defined in the usual way, i.e. the sum divided by the count. Because of this dependency upon
sum, avg is also an operator on numeric attributes only.

min The smallest of the values present for a given attribute. For an alphanumeric attribute, the alpha-
betical ordering is used to determine the smallest element.

VI

max The largest of the values present for a given attribute. For an alphanumeric attribute, the alpha-

betical ordering is used to determine the largest element.

These operators can be used in two types of aggregation:

(a) Scalar aggregates, yielding a single value as the result.

(b) Aggregate functions, producing several values determined by calculating the aggregate over a subset
of the relation. Each subset consists of the tuples such that the contents of one or more attributes
grouped in a by-list are the same. Hence the result of an aggregate function is a relation whose
number of tuples equals the number of different values in the by-list.

While scalar aggregates are independent of the query in which they are nested, aggregate functions

are not. Since each value computed by such a function carries information on part of a relation, tuple van-

ables in the by-list must be linked to the corresponding tuple variables, if any, in the outer query- that is,
'U

they should refer to the sane part of the relation. (The inner query, as opposed to the outer query, is the

one consisting of the attribute to be aggregated, the by-list, and the inner where clause.)

By their very nature, both scalar aggregates and aggregate functions operate on the entire relation.

However, they can be locally restricted via a where clause to operate only on certain tuples of the relation.

The local or inner where clause is processed separately from the outer one of the query. We first show an

aggregate function, followed by a scalar aggregate.

EX4MPLE. Suppose the relation Faculty holds relevant data, say name, rank and salary, about the profes-

sors in a university department -

Faculty(Name, Rank. Salary):

Name Rank Salary
Tom Assistant 23000
Mernie Assistant 25000
Jane Associate 33000

range of f is Faculty
retrieve (f.Rank, NumInRank - count(f .Name by f.Rank))

Example 1: How many faculty members are there in each rank?

The range statement declares a tuple variable f that will be associated with the Faculty relation. The

retrieve statement contains the target list of attributes to be derived for the output relation, in this case,

Rank and NuminRank:

2

Rank Nuw/.Rank

Assistant 2
Associate I

The output relation contains as many tuples as actual values exist in the by-list. If there had been no by-list,

NwlnRan would be 3 in all the derived tples. IIII

Aggregation performed over the set of strictly different values in an attribute is called unique aggre-

gation. Quel suppot three unique aggregates: countU, sumU, and avgU. Unique versions of any,

max and min are not necessary.

EXAMPLE. This example illustrates multiple scalar aggregates and unique aggregation.

range of f ia Faculty
retrieve (NumFaculty - count(f.Name), NumRanks - countU(f.Rank))

Example 2: How many faculty members and different ranks are there?

The result is a single tuple:

NumFaczdry NumRanks

* N 3 2

1.2. Semantics of th Quel Retrieve Statement

A tupe relational calculus semantics for Quel statements without aggregates was defined by Ullman

[Ulman 19821 and is reviewed here. Although values in a target list can be expressions, rather than simply

attributes, we ignore that detail in this paper for simplicity of notation. Thus the skeletal Quel statement is

range oft 1 isR,

range of ik is Rk
ratrieve (tj,.Dj,, ..., t..Dj)

where I

in which

1~ik.1i!S k
I j deg (Ri,), I < <deg (R)

where deg (R) is the degree of R, that is, the number of attributes in each tuple of R. The corresponding

tuple calculus statement is

3

1W ' I 1t) "-.. a tt)
i

(R 1(() A- .. ARA (t&)

Aw[]=t , I]X ... X w[rl=tjj,J

This statement specifies that the tupic ti is in the relation Rj , the result tuple w is composed of r auributes,

the m-th attribute of w is copied from the j, -th attribute of the tople variable ti., and that the participating

tuples are determined by the restriction W'. We use V' instead of # to indicate modifications for attribute

names and Quel syntax conventions.

1.3. Adding Aggregates to Tuple Relational Calculus

The semantics for the Quel retrieve statement with aggregates will be presented now. We first intro-

duce the aggregate operators to be used in the tupl calculus. This material is new, and is based on Klug's

method, which was used in a separate, more formal tuplc relational calculus idug 1982]. In this approach,

an aggregate operater, defined as a function, is applied to a set of r -tuples, resulting in a tupie containing r

attribute values, with each attribute value equivalent to applying the aggregate over that attribute. By

applying the function to the set of complete tuples, the distinction between unique and non-unique aggrega-

tion can be preserved.

Let R be a relation of degree r containing n tupls, n > 0, and let t be a tupl variable associated

with R.

DEFINITION. count (R) A (n,..., n)

That is, the count function yields a tuple whose r components equal n.

DEFINITION. any (R) t (sign (n), sign (n))

The sign function produces the value +1 if n is positive (at least one tuple in R), and 0 if n is zero (no
tuples in R). Again, all r components of the result tupl equal the same value.

For the remaining definitions, assume n > 0.I 'I
DEFINITION. $n(R)= i~]... t[r]

Each component of the result tuple equals the sum of all values in the corresponding component of the
tuples of R.

4
. .

DITR ft J

Each component of the result tuple equals the average or arithmetic mean of all values in the corresponding
component of the tuples of R.

DEFINITION. min(R)A(min t[l] ..., min (r])
ts.R f4r

Each component of the result tuple equals the minimum of all values in the corresponding component of
the tuples of R.

DEFINITION. ma(R)A(maxt[1],...,maxt[r])
I LaR f4R

Each component of the result tuple equals the maximum of all values in the corresponding component of
the tuples of R.

For n = 0, swm, avg, min and max are arbitrarily defined to be 0. However, new implementations can

be more consistent with reality if they return a special null value for those cases [Epstein 19791.

The advantage of defining aggregate operators to work on relations instead of on domains is that

duplicate values enter the set calculations without difficulty. Later on we consider unique aggregates,

which eliminate duplicate values to compute aggregates over unique values.

The functions defined above are used in the tuple calculus semantics. Let F be any of the aggre-

gates defined in Section 1.1. Quel queries with one aggregate function in the target list are of the form

range of tjisR

range of tk is Rk
retrieve (, tD,, y = F(tt,D,, by iD,, ... t D where Vi))

where

in which

1! <i <k,..... 1 <5i, ! k
1 !5t 115k,..... 1: <.5 k
1: <j 1<deg (Ri, 1: <j, < deg (R,.)
1:< m 1: <deg (Rj),..... 1:< m. <5deg (Rj.).

Again, we simplify the expressions appearing in the aggregate to attribute names. There is also the restric-

tion that the tuple variable(s) mentioned in W must be either ti, or one of the tuple variables appearing in

the by clause: tj.. ti (otherwise, there may be many more tuples participating in the aggregate, i.e., those

from additional tuple variables, thereby generating unexpected results from the aggregate). The attributes

outside the aggregate, Dj,, • , Dj,, and the attributes used within the aggregate, D,,, • , D,, usually

5

P 1W ,r

overlap, but need not This aggregate

(a) takes the cartesian product of the relations associated with the tuple variables appearing in the aggre-

gate,

(b) removes all resulting tuples that do not satisfy the condition in the where clause of the aggregate,

(c) partitions the resulting tuples by the values of the attributes listed in the by clause,

(d) applies the aggregate to each partition,

(e) and finally associates the result with each combination of tuples participating in the original query,
with the partition selected using the values indicated in the by clause.

We first specify the partition of the cartesian product of the relations associated with the tuple vari-

ables appearing in the aggregate. Initially assume that the tuple variables it,, t. are all distinct. Define a

partitioning fnction P corresponding to the aggregate in the query as a function of n -1 values

a 2, ..., a., given by

P (a2 ... a.) A fb IP) I h)"" t.

P(2 t,(t) "" Rto

A b[l]= tJ] A ... Ab pL = tjdeg(R4)]

At ttm] = a2 X ... X t.[m.] =a.

where p _ ideg (R4). Each of the combinations of values 2 ..., a. existing in the specified attributes

produces one partition on which the aggregate has to be applied.

EXAMPLE. The partitioning function for Example I is particularly simple:

P (a2) = {b (3) 1 af)(Faculty(f) X b = f A f [Rank] = a 2)}

For this particular Faculty relation, P(Assistant) = ((Tom, Assistant, 23000), (Meme, Assistant, 25000))

and P(Associate) = ((Jane, Associate, 33000)). Note that we use attribute names rather than indices for

notational convenience. Ill

64

Let F be the aggregate operator defined above corresponding to the Quel aggregate F (e.g., if F is

count, F is count). A term of the form F(R) will denote the tuple obtained from the application of

aggregate operator F to relation R. The operator F applies the same aggregate to every attribute in R. Let

F (P (a2, ..., a,))[m] denote the m-th attribute of the tuple evaluated by F (P (a2 a.)). For Example 1,

count (P (Assistant)) - ((2,2,2)) and count(P (Assistant))[Name] = 2.

The counterpart tuple calculus statement for the Quel query is then

IW (r+ l) .. -- to)

(R I(t 1) A ... AR(t)

Aw (]=ti,[j 1 A ... A w[r]=ti.l]

A w fr+I] = F (P (t,[m2], ..., t.[mj))[m 1]

A ')}

The partitioning function computes the partitions, with the appropriate partition selected by the

parameter(s) passed to P. If the tuple variables appearing in the aggregate are not distinct, then the first two

lines in the definition of P should be altered to eliminate duplicate tuple variables. Also, if tuple variable t,

does not appear outside of the aggregate or in the by clause, then that tuple variable should be removed

from the first two lines.

EXAMPLE. The tuple calculus statement for Example 1 is

{w(2) 1 (Tf)(Faculty (f) A w[] =f [Rank] w[2] = count (P (f [Rank]))[Name])} 1111

For a scalar aggregate, there is no by clause and the partitioning function P is a set rather than a

function, namely

P A fb) I (:It,,XR,,(t,)Ab = t,, A W,')I

where p = deg (RI,). Here, P is formulated to emphasize its similarity with the more general partitioning

function given earlier. As expected, P computes a subset of RI,. The tuple calculus statement for the query

remains the same as above, except that P is used in place of P (t,[m2]. ti[m]).

7

EXAMPLE. For the count aggregate of Example 2.

P lb (3) 1 Cf XFaculty(f) Ab =1)f 111

For a query involving several aggregates, a separate partitioning function P (of either the scalar or

functional form) is defined for each aggregate.

1.4. Unique Aggreption

The aggregates as defined cannot do unique aggregation directly, because they operate on relations,

not on attributes. It tuns out, however, that a slight change of the partitioning function P solves the prob-

lem.

Let the modified partitioning function be defined in terms of P as

U (a 2l a.)A_ 1u ' ()IGb)(b e P (a 2,..... a.) A u[1] = b[m 1])

The net effect of this is the elimination of all duplicate values from the attibute upon which aggregation

will be performed.

For a scalar unique aggregate, the partitioning set U is defined in a similar fashion based on P,

U A{ul) I ab)(b e P Au[l]=b[m,])}

The tuple calculus semantics of all unique aggregates is simply obtained by substituting U for P in the

main formula of the previous section, and using the previously defined operators count, sum, and avg.

EXAMPLE. For Example 2 for the countU aggregate,

P 2 = {b(3) 1 f)(Faculty(f) Ab = f

U2 = {u(i) I (GbXb E P2Xu[l]=b[2])}

= {(Assistant), (Associate)) Il1l

8 %

0

VW7TF'W' VV1I _V W11 W V VP'6'~ %V IM -V

1.5. Multiple Aggregation

A Quel query may contain multiple aggregates. Each of the aggregates is computed from its own

partitioning function. All the partitioning functions are then referenced in the main tuple calculus state-

ment.

EXAMPLE. The query in Example 2 contains both count and countU aggregates. We gave the

definitions for the two partitioning functions (actually sets) P1 and U 2 above. The corresponding tuple

tuple calculus expression is then

{w(2) 1 w[lI=count (P)[Nam e] Aw[21=count (U2) [Rank)}

Since the tuple variable f being aggregated over does not appear outside of the aggregate, it also does not

appear in the tuple calculus statement. 111111

1.6. Aggregates in the Outer Where Clause

So far we have seen standard and unique aggregates being used in the target list of a query. They can

also appear in the Quel where clause.

Let us first deal with an aggregate in the main where clause. If it is a scalar aggregate, it is indepen-

dent of the rest of the query and therefore it is simply calculated and replaced by its value. However, if an

aggregate function appears in the outer where clause, its corresponding partitioning function is defined, and

the values of the aggregated attribute are used in place of the aggregate in the query. Following the rule

that the tuple variables in by-lists are global, the by clause is linked to the rest of the query through the

arguments to the partitioning function.

1.7. Nested Aggregation

A similar rule applies in the case of nested aggregation, that is, when an aggregate function F3

appears in a local where clause of an aggregate F2- The tuple variables in the by-list of F 3 are linked to the

tuple variables of the same name appearing in their outer environment (that is, the F 2 query).

Nesting may be deeper, with F 2 nested in (called from) an outer aggregate Fl. Again, tuple variables

appearing in the by-list of F 2 are linked to the tuple variables of the same name appearing in F 1 , and so on.

9

I
I

EY~~~~~Vmw~~~~~wwuuu~~~Y~uv w1 MU FUN~uaJ xz.5 WVT IJ~ VJr UXU I~ &W FU~~XW WXW R~ I 'I Wr V jw.W0L~ V V , ,

Links are accomplished via the arguments to the partitioning functions. Thus, at any one time, only one

level of nesting need be considered [Epstein 1979].

1.8. Expressions in Aggregates

In the formal semantics, we assumed that a single attribute was aggregated, after partitioning by zero

or more attribute values. Quel allows arbitrary expressions to be aggregated, and supports expressions in

the by clause. The former can be accommodated by simply substituting the appropriate expression for

F(...) in the line specifying the output aggregate attribute in the main tuple calculus statemenL

EXAMPLE. If Example 1 was modified to

range of f is Faculty
retrieve (f.Rank, This-count(f.Name by f.Rank)*count(f.Salary by f.Rank))

Example 3: One modification of Example 1.

the only change would be in the computation of w [2]:

w (2 = count (P (f [Rank]))(Name *count (P(f (Rank))(Salary 1I1111

Expressions in the by clause require two changes: one in the definition of the partitioning function where

the parameters are equated and one in the main statement, where values of the parameters are specified.

EXAMPLE. If Example I was modified to

range of f is Faculty
retrieve (f.Rank, This = count(f.Name by f.Salary mod 1000))

Example 4: Another modification of Example 1.

the modified partioning function definition and tuple calculus statement would be

P (a2) = {b(2) I (-f)(Faculty(f) Ab=f A f [Salary] mod lO00=a 2)}

{W C) I e)(Faculty (f) A w [1] =f [Rank] A w [2] = count (P (f [Salary]mod 1000))[Name]J) }11
1.9. Summary

There are six fundamental operators that perform aggregation in Quel. The grouping and selection of

tuples to be aggregated is done by the partitioning function, which also determines whether the standard or

the unique version is being used. Aggregates may appear in the outer where clause, as well as nested in the

10

I

za~~~u. ..X- 1

inner where clause. The depth of nesting is arbitrary.

While only the semantics for the retrieve statement has been given, it is easy to extend it to specify

aggregates in the Quel modification statements (append, delete, and replace) [Snodgrass 1987],

using the strategy discussed in this section.

'U.

'U

'

2. Temporal Aggregates In TQuel

In the previous section we have seen the various Quel aggregates and their formal semantics. We

now introduce TQuel aggregates in an intuitive way through examples. We first give an overview of the

TQuel language and then turn to aggregates.

TQuel is a version of Quel, augmented to handle the time dimension [Snodgrass 19871. TQuel sup-

ports valid, transaction, and user-defined time, and thus supports temporal queries [Snodgrass & Aim

19861. Of the three, valid time, modeling the real world occurrence of an event, is by far the hardest to sup-

port in aggregates. Transaction time, modeling the storage of information in a database, may be supported

through one additional term in the tuple calculus semantics. User-defined time, an encoding whose seman-

tics is maintained by application programs, is handled in an identical manner to morm conventional data

types such as integers and character strings; all that is necessary are input, output, and comparison func-

tions. To simplify the exposition, we will not use transaction or user-defined time in the example queries

or in their formal semantics. In the general formal semantics, we will include transaction time, to illustrate

how easy it is to support.

Temporal relations are four dimensional. Multiple tuples containing multiple attribute values contri-

bute two dimensions; valid and transaction time contribute the other two dimensions. For both the exam-

pies and the semantics, we embed these four dimensional structures into two dimensional tables, appending

additional, implicit time attributes that are not directly accessible to the user. Other embeddings are possi-

ble (five are given in [Snodgrass 1987]), but will not be used here. The degree (deg) of a temporal relation

is the number of explicit attributes.

Relations in TQuel can represent either a collection of events that happen at certain points in time

(event relations), or a collection of intervals that have a duration, that is, a from time and a to time (interval

relations). Thus, event relations have one valid-time auribute, at, whose value represents an interval of unit

duration, whose length depends on the granularity of valid time. In the examples, we have assumed a

timestamp granularity of one month: events occurring within a month cannot be distinguished in tfme.

Interval relations have two valid-time attributes,from and to, whose values together represent an interval of

arbitrary length. t1 , when assigned to the valid-time attribute at, represents ihe interval [t 1. t 1+l). If t I sim-

ply precedes t2 in the linear ordering of time, then t j and t 2, when assigned to the valid-time attributes

12

49

from and to respectively, represent the interval [t1, t2). Although not shown in the examples, both event

and interval relations carry two transaction-time attributes, start and stop, indicating when the tuple was

recorded in the database and when it was logically deleted from the database, respectively. The assignment

of the transaction times to a target relation is made by the system when data are recorded.

The TQuel retrieve statement augments the standard Quel retrieve statement by including

* a when clause, paralleling the already existing where clause, to select tuples whose temporal attributes
satisfy desired temporal constraints;

* a valid-at clause that permits the assignment of a non-default and possibly computed value to the
valid-time attribute of a target event relation;

* valid-from and valid-to clauses that permit the same kind of assignment to the valid-time attributes of
a target interval relation; and

* an as-of clause to specify rollback to a previous transaction or series of transactions.

EXAMPLE. The relations Faculty, Submitted and Published, shorter versions of those appearing in
a

(Snodgrass 1987], contain the following tuples:
.

Faculty(Name. Rank, Salary):

Name Rank Salary from to
Jane Assistant 25000 9-71 12-76
Jane Associate 33000 12-76 11-80
Jane Full 34000 11-80 12-83 r
Jane Full 44000 12-83 cc
Merrie Assistant 25000 9-77 12-82
Mernie Associate 40000 12-82 00
Tom Assistant 23000 9-75 12-80

Submitted(Author, Journal):

Author Journal at
Jane CACM 11-79
Merrie CACM 9-78
Merrie TODS 5-79"%
Merrie JACM 8-82 %.

Published(Author, Journal): S

Author Journal at

Jane CACM 1-80
Merie CACM 5-80
Meme TODS 7-80,

13
5.

A repeseuon of the tuples in the three relations is shown in Figure 1. The first example TQuel query

contains no aggregates:

range of f ia Faculty
range of f2 is Faculty
retrieve (f.Rank)
valid at begin of f2
where f.Name - "Jane" and f2.Name - "Merrie" and f2.Rank - "Associate"
when f overlap begin of f2

Example 5: What was Jane's rank when Merrie was promoted to Associte?

Figure 1: Example Relations shown on a Time Line

" ."errie. A4sociste, 40K

Ti sAsaiszi2SK 2

Faculty relation "I
I I I

Jme, Anociae. 33K I, ' FuIL44K

Meri,, TODS
Marie, CAC34

71 72 7 73 ' 74 7S 76 77 , 79 5 51 52 53 ' 54

Published relation * Marie, TODS

MerMe, CACM
Tams, CACM

7n ' 72 ' 73 ' 74 75 ' 76 ' 77 751 79 so ' 81 ' 2 ' 53 5 64

Only two tuples will participate in this query, (Jane, Full, 34000, 11-80, 12-83) for f and (Merrie,

Associate, 40000, 12-82, -) for f 2, based on the where and when clauses. The target list specifies the

value of the Rank attribute and the valid-at clause specifies the value of the implicit at attribute. The result-

ing relation has one tuple,

Full 12"82

14

2

2.1. Adding Aggregates to TQuel

It is desirable that TQuel aggregates be a superset. of the Quel aggregates, with a natural time-

oriented interpretation. Therefore, the TQuel version of a Quel aggregate will perform the same fundamen-

tal opeaon, while ranging over an event or an interval relation.

Thiere are some differences between Quel and TQuel aggregates. Historical and temporal daiabases

are characterized by the changing condition of their relations: at time t I a relation contains a set of tuples,

and at time t2 the same relation may contain a different set. Since aggregates are computed from the entire

relation, this in turn causes the value of an aggregate to change from, say, v I to v2. Hence, while in Quel an

aggregate with no by-list (scalar aggregate) returns a single value, in TQuel the same aggregate returns,

generally speaking, a sequence of values, each attached to its valid times. For an aggregate with a by-list, a

sequence of values for each value in the by-list is generated.

EXAMPLE. Let us consider Example 1, this time on an historical relation:

range of f is Faculty
retrieve (f.Rank, NumInRank - count(f.Name by f.Rank))

Example 6: Example I on an historical relation.

This query retrieves each rank, together with the current nunber of faculty at that rank. With the default

when clause (when f overlap now) and valid clause (valid from begin of f to end of

f), the resulting relation is

Rank NuminRank from to
Associate 1 12-82
Full 1 12-83

Defaults are discussed in detail in Section 2.5. To extract the history of the requested count, simply use an

explicit when clause: when true. As can be seen in Figure 2, for each rank there can be more than one

related count over time.

15

Figure 2: An Example of count

II S I I

Faculy relatioa T,, , Assis. ,3K

:(just for the Assistant rank) ,, ' 2A K* li IAssag 4 S I

I I I I I PS

71I 2 1 7 4 7, 7 71 8 79 1 n 83 8

I I i Ii

2 2

II I
I

I i

71 72 ' " ' "7 ' 7"4 7' 7/i ' "6 7"I7 71 7 "9 8 10 81 n 9 2 83 84

II I I I

A count (Na9e) 9-7

!I I I!

A I* I I I I
* q I

I
. 1,I I £

71 7 2 73 74 " 7S 74 77 "I 7 "9 80 5iO 1 ' 32 33 84 $

The altenred query yields the foilowing tuples

Rank Nu,.rt.ank fo to

Assistant 1 9-71 9-75
Assistant 2 9-75 12-76
Assistant 1 12-76 9-77
.Asstant 2 9-77 12-80

Assistant 1 12-80 12-82
Associate 1 12-76 11-80
Associate 1 12-82 0-
Full 1 11-80 12-83
Full 1 12-83

The count may change only when a Faculty tuple is created, or becomes invalid. Thus each output tuple

is valid between two events (represented by vertical dotted lines) in the graph of the Faculty relation (Fig-

ure 1). 1llll

EXAMPLE. The next example shows how an aggregate, which gives an interval relation, can occur with

an event relation in a query.

range of f is Faculty
range of s in Submitted
retrieve (s.Author, s.Journal, NumFac - count(f.Name))
when a overlap f

Example 7: How many faculty members were there each time a paper was submitted to
a journal?

1

, ..-....,....,......,..,.,........-... •....,.....,.......-........... ,......... ,..-...,.,.'

The result is:

Author Journal NumFac at
Merrie CACM 3 9-78
Merrie TODS 3 5-79
Jane CACM 3 11-79
Merrie JACM 2 8-82

The count is computed for every period of time such that f overlaps s, and then, by default, the valid

times of the output are the overlap of the valid times of the count, the f tuple variable, and the s tuple

variable, producing an event relation. 111111

Quel allows an inner where clause as the way to preselect tples for the computation of the aggre-

gate, otherwise, aggregates always operate on the entire relation. Similarly, in TQuel the inner where,

when, and as-of clauses serve the same purpose. An inner valid clause is not allowed, because the interval

of validity for the value calculated by the aggregate is indirectly specified using the for clause, to be dis-

cussed in Section 2.2.

EXAMPLE. Consider the query in Example 6, modified to exclude Jane from the calculation of the aggre-

gate:

range of f iL Faculty
retzieve (f.Rank, NumnInRank-count (f.Name by f.Rank where f.Name!-"Jane"))

Example 8: A third modification of Example I

Again, with the default when and valid clauses, the query yields the folowing tuples

Rank NumnlRank from to

Associate 1 12-82
Full 0 12-83 oo

Note that a default value of zero occurs for each point in time when a tuple of the specified rank is valid.

but the subset of tuples used to compute the aggregate is empty. 1111W

The above examples illustrate our approach to computing TQuel aggregates. To aggregate a given

attribute of relation R,

(a) Determine the periods of time during which R remained "fixed" or "constant", that is, no new
tuples entered the relation (and, if R is an interval relation, no tuples became invalid).

(b) For each constant set of tuples in R, select the tuples that satisfy all the qualifications required by the
inner where, when, and as-of clauses, if any. Defaults are used if those clauses are not present

-V 17

N%

,N

L.N- . *' .'~' , -. *t.
,r ' 9 . , ,Nqi N ; ' ';&i N; ,~.,' ',...,..'* '.'...",'.,,-.. ,.,',,-',.,,'..

(c) If there is a by-list with this aggregate, subdivide each constant set of tuples into subsets, each subset
corresponding to one value of the by-list attributes. Each group of selected tuples is called an aggre-
gation set.

(d) Compute the aggregate for each aggregation set.

(e) Associate the result with each combination of tuples participating in the original query, with the
aggregation set selected (I) using the values indicated in the by clause, (2) usj--g the valid time of the
tuple variables appearing in the aggregate, and (3) using the interval or event specified in the valid
clause.

The basic strategy consists of reducing a TQuel aggregate to a series of Quel-style aggregates, each applied

on a period of time when the relation does not change its contents. Each value of the aggregate is associ-

ated with an assignment of values to the by-list attributes, and is attached to the particular period of time it

was valid. At each point in time, there is exactly one value of the aggregate for each combination of values

of the by-list attributes.

This approach is necessarily more complex than that given in Section 1.3 for Quel aggregates. In

TQuel, for each interval during which all base relations participating in the aggregate(s) remain "fixed,"

an aggregate tuple is computed for each aggregation set. In Quel, all base relations are already fixed, since

the relations do not vary over time. This aggregate tople, along with tuples from the base relations that are

valid over the interval, determine the output tuples for the interval. Whereas Quel uses only the explicit

attribute values via the by clause to connect the aggregate tuple with the participating tuples in the retrieve

statement, TQuel also uses the implicit time values. Any combination of aggregate and base-relation tuples

that satisfy all qualifications required by the outer where and when clauses, and also overlap, produce an

output tuple. In additon, the valid time of each output tuple is required to be the overlap of the interval or

event specified by the valid clause with te overlap of the aggregate tiple and base-relation tuples named in

the aggregate.

The restriction that the valid time of the output tuple be the intersection of the valid times of some of

the participating tuples and the aggregate tuple as well as the time specified by the valid clause does not

limit the range of queries that TQuel can support. To support queries whose output is derived from aggre-

gate and base-relation tuples valid over different intervals, we simply pre-compute the aggregates and treat

them as ordinmy historical relations in the main TQuel query.

XAMPLE. The following query combines information from two separate intervals of ume.

18

I

.%-" "%,* -"*%. *' , " e
%

%, % " " % " " ", " " % - % "* "'Y ' , ""6 % % '. •% % % ,

cange of f is Faculty
retrieve into temp (maxaal - max(f.Salary))
rane of t in temp
retrieve (f.Name)
valid at "June, 1981"
where f.Salary > t.maxsal
when f overlap "June, 1981" and t overlap "June, 1979"

Example 9: Who made a salary in June, 1981 that exceeded the maximum salary made
in June, 1979?

With the default when clause (when true) and valid clause (valid from begining to for-

ever) for the first retrieve statement, the query yields

Jane I 6-8d.

By pre-computing the aggregate and substituting the resulting historical relations for references to

the aggregate in the main query, we have in effect reduced the TQuel query with aggregates to a TQuel

query without aggregates. Hence, there are no implied restrictions on the valid times of the aggregate and

base-relation tuples that contribute to output tuples or the valid time of the output tples.

2.2. Cumulative versus Instantaneous Aggregates

An aggregate may or may not take into account tuples that are no longer valid. The following

definitions are useful:

Cumulative Aggregates. If the value returned by an aggregate for each point t in time is computed from all
tuples that have been valid in the past, as well as those valid at t, then the aggregate is said to be cumula-
tive.

Instantaneous Aggregates. If the value returned by an aggregate for each point t in time is computed only
from the tuples valid at time t, then the aggregate is said to be instantaneous. S

These aggregates act differently when applied to an event or an interval relation. For an event relation, as

the length of the time unit (the timestamp granularity) is reduced, the probability of finding any valid .uples

decreases. Aggregates such as count, applied at a given instant, would thus return different results

depending upon the granularity of valid time. On the other hand, it is always possible to count the events

that have occurred in the past, or in a given period of time, in a cumulative fashion. For an interval rela-

tion, tuples are valid over an interval of time which is at least as long as the timestamp granularity, and

19

therefore the above problem does not exist. We therefore restrict aggregate operators over event relations

to be cumulative, while aggregate operators over interval relations can have both an instantaneous and a

cumulative version. However, each value of an aggregate, be it instantaneous or cumulative, is valid dur-

ing a period of time.

For cumulative aggregates, the user must specify how far in the past to include tuples used to com-

pute a value at time t. The for clause is used for this purpose. Instantaneous aggregates (the default) are

specified using for each instant. If all previous tuples are to participate. for ever is used.

Intermediate cases, such as using only those tuples valid at some point in the previous year, are specified

using for each < time unit>, e.g., for each year, for each day. If, say, count (for

each year) is used, then the aggregate, when computing a value valid at a particular month m, will

operate over all tuples that were valid sometime during the year up to and including the month m. The

value at 3-76 will include all tuples valid sometime during 4-75 through 3-76; the value at 4-76 will include

the (potentially different) tuples valid sometime during 5-75 through 4-76. The interval used (in this case,

year) is termed the window, and such aggregates are termed moving-window aggregates.

EXAMPLE. To illustrate the difference between the various kinds of aggregates of an interval relation,

consider Figure 3, which illustrates the execution of the following query,

range of f is Faculty
retrieve (Cl- count(f.Rank for each instant), C2-count(f.Rank for each year),

C3-count(f.Rank for ever), C4-countU(f.Rank for each instant),
C5-countU(f.Rank for each year), C6-countU(f.Rank for ever))

Example 10: Various combinations of unique and window sizes.

on the historical Faculty relation shown in Figure 1. Because the tuple variable f does not appear outside

the aggregates, the default when clause is when true. Hence, the entire history of the counts is com-

puted. ll

20j .S

.,.-.--- ~ ..%'-* §~~- -b~: . '~**.**]

Figure 3: Comparison of Six Aggregate Variants

II I i, I

II I . + I

Faculty relation ot sitm 3 t4effie..4A~ocite,40K

Menc, Assstaw422K
,~ ~ ~ efe :wtsti 25K. ,, . .-

Je. AssocAms33K "3K F, "K

] * Jan- Ful, 34K
I I I II 1 _

71 72 73 7 74 ' 75 76 77 78 79 80 1 3 2 13 s4

i I I I° I-
II I I II I

I I I I
C1 ~ count(f.Rank for ea~ch insa.nt7 3

2 2 , 2 2 2

71 72 I 73 74 ' 7 i 76 77 73 79 S0 I 82 83 84
SI I iI li II

I I II II II .II
I I II II I II

* I °1 I II II

C2 count (f.Rank for each yeai):," ,
' ' .48 4 4 " ,-

3 3 3 3i~fi
2 12 2II | II

I
1I I Iv

0' II I II I i I

71 72 73 74 75 76 77 78 79 30 31 12 13 84

SI 01 ° I

I IISI III

C3 count(f.Rank for eviur) 5

'301 I 4 -

71 72 T 74 7 76 771 78 79 30 81I 92 821 2 33 4
" 3

I I I I I
i

0 III I
I

I

iI I I II I
iII I I5 -

C4 countU'f.Rank for each intant) "

1 ' 2 2 2 , 2

II1

II ° 0Ii

72 73 74 75 ' 76 ' 771 78 79 0 31' 82 23 U
iiI I ! II i li

Si I IIII II i if

C5 countU(f.Rank for h y r)--
I i 2 22 2220: ,, ~ ,, ,, , ,

i I ii iI I ii i I

01

I iI II7 1ilI II I I

71 72 73 74 75 76 77 73 79 So 81 9I2 8 84
I I I ii

i I i ° i

C6 4 countUlf.Rank for Iver) 3 3 3)
' , 2 I2 ',

72l l l
l I

72 t 73 74 75 76 7 /7 78/1 79 80 SI 3 2 33 84Hp.

I..

21
%

,.

2.3. New Aggregates

All Quel aggregates have a TQuel counterpart There are also some aggregates unique to TQuel. The

first is quite similar to avg. applying both to snapshot relations and temporal relations:

stdev The standard deviation of the set ofn values present in a given attribute, defined as a measure of
the homogeneity of the values. This operator is restricted to operate only on numeric attributes.

The remaining new aggregates are strictly temporal.

first This aggregate reums, at each point in time, the oldest value of the given attribute, that is, the
one associated with the first valid tuple. If two tuples have the samefrom value, one is arbitrarily
selected.

last This aggregate is analogous to first. It returns, at each point in time, the newest value of the S
given attribute, that is, the one associated with the tuple with the latest from time. If two tuples
have the samre from time, one is arbitrarily selected.

avgti AVeraGe Time Increment" the average growth or decrease experienced by values of an attribute
over time. This aggregate is only applicable to numeric attributes in event relations. It returns a
value indicating growth per time unit, e.g., feet/hour, or dollars/month. The time unit can be
optionally specified by the user by means of the per clause (see the syntax in the appendix):
per hour, per month. This aggregate compares the atuibute value of each tuple with the
attribute value of its chronologically previous tpie, relative to the time elapsed, and smooths out
all the comparisons by taking their arithmetic mean. At least two tuples are needed to compute
avgti so that the comparison can be made; when there are less than two t"pies, a value of 0
results.

varts VARiability of iune Spacing: the degree of inequality of the time spacing within a given set of
events (the argument to this aggregate is an event expression evaluating to an event). This aggre-
gate returns a nondimensional quantity which has the same value for each attribute. A value of 0
indicates the tuples are perfectly spaced. This aggregate also considers the tuples in chro .ologi-
cal order. It finds the ratio of the standard deviation of the time lengths from one tuple to the next,
to the average of those time lengths. Like in avgti, at least two tpies are needed to perform
the comparison, with a 0 resulting when two topies aren't available.

In addition, two aggregates that evaluate to valid time are available.

earliest The oldest time period of an interval relation, that is, the first from-to interval or the oldest
event, that is, the first at event. If two tuples of an interval relation have the same from
value, the one with the earlier to time is considered to be older.

latest The newest time period of an interval relation, that is, the lastfrom-to interval or the newest
event, that is, the last at evenL If two tuples of an interval relation have the same from value,
the one with the later to time is considered to be newer.

If no tpies are available to aggregate over (i.e., if the aggregation set is empty), then first and last

return a distinguished value for each datatype (e.g., 0 for integer attributes), and earliest and

latest return the interval beginning extend forever. They are called aggregated temporal

constructors because they return a time interval as their result. They can be employed by the user to specify

.1'

22

V '1P 0

conditions in the temporal qualification (when clause) or the valid time (valid clause). To adhere to the syn-

tax of temporal expressions and predicates, these aggregates take an interval expression, rather than an a

numeric or string valued expression, as an argument.

Note that, while first and last yield (potentially) several tuples of output, first (for

ever) outputs just one tuple. The same comment applies to earliest (for ever).

2.4. More Examples

The next example, modified from one given in [Epstein 1979], shows an aggregate in the inner where

clause of another aggregate; a case of nested aggregation:

range of f is Faculty
retrieve (f.Name, f.Salary)
valid from begin of f to begin of "1980"
where f.Salary - min(f.salary for each instant

where f.Salary !- min(f.Salary for each instant))
when true

Example II: Who was making the second smallest salary, and how much
was it, during each period of time prior to 1980?

The output is

Name Salary from to
Jane 25000 9-75 12-76
Jane 33000 12-76 9-77
Merrie 25000 9-77 1-80

Aggregates can also appear outside the target list.

range of f is Faculty
retrieve (f.Name, f.Rank)
when begin of earliest(f by f.Rank for ever) precede begin of f

and begin of f precede end of earliest(f by f.Rank for ever)

Example 12: Who were the professors hired into or promoted to a rank while
the first faculty member ever in that rank had not yet been promoted?

The two portions of the when clause specify (1) that f was hired into or promoted after the earliest faculty

member, and (2) that the earliest faculty member had not been subsequently promoted before f was pro-

moted into the rank.

23

• ,''..''" .-'..'"". "w,.-". .-'. ",". "- .-"- ..". ","... . .. - '% '..'.'%:,,- . .' .- -,., ' ,' ' . ., ., , N ,N ... ,-% ,- N, .- ,. . .

First the earliest in each rank is computed,

Rank earliest(f) from to
Assistant [9-71, 12-76) 9-71 oc
Associate [12-76, 11-80) 12-76 .o
Full [11-80,12-83) 11-80 a.

Only one tuple satisfies the when clause, and the output is

Name Rank from to
Tom Assistant 9-75 12-80

The when clause can be used inside an aggregate:

range of f is Faculty
retrieve (amountct-countU(f.Salary for ever when begin of f precede "1981"))
valid at now

Example 13: How many different salary amounts has the department paid its
members since its creation until 1981?

Through the use of countU, each salary amount is counted only once for each period of time. The result

is

Samountct Ia,

, n: Inw .

Note that Merrie's initial salary of 25K is not counted, because is is identical to Jane's initial salary.

Our last examples reference the event historical relation c-periment, containing the following tuples:

experiment(Yield):

Yield at
178 9-81
179 11-81
183 1-82
184 2-82
188 4-82
188 6-82
190 8-82
191 10-82
194 12-82

I

24

N --. -'N

LY- :v~

range of x is experiment
retrieve (VarSpacing - varts(x for ever),

GrowthPerYear - avgti(x.Yield per year for ever))
valid at x
when true

Example 14: Given the above set of experimental data, how equally spaced are the
observations in time, and how fast is the yield growing per year?

Since we want the history, we override the default when clause. Computation of the variability of time

spacing, for any attribute, consists of (a) sorting tuples by their at attribute and (b) considering every pair of

chronologically consecutive tuples, Si and Si. 1, and finding the coefficient of ,ariation of the length of time

from event Si to event S+i,, that is,

standard deviation of <S 2[a] - S1[at], ... , Si , [at] - Si [at>
average of <S 2[at] - S[at], ... , Si.+I[at] - Si[at>

To compute the average time increment, we (a) again sort the tuples by their at attribute, and (b) for each

pair of chronologically consecutive tuples Si and Si+1 , compute the increment of the value

Si+(Yield]- Si[Yield], averaged over previous pairs (for ever implies over all previous pairs), and

then normalize over a year (per year). The result is the following relation:

VarSpacing GrowthPerYear at
0.0000 0 9-81
0.0000 6 11-81
0.0000 15 1-82
0.2828 14 2-82
0.2474 16.5 4-82
0.2222 13.2 6-82
0.2033 13 8-82
0.1884 12 10-82
0.1764 12.8 12-82

The value of VarSpacing at 2-82 is fairly large because the previous four tuples (at 9-81, 11-81, 1-82, and

2-82) were quite variably spaced (2 months, 2 months, and 1 month). After that point, VarSpacing

decreases with time. Since VarSpacing = 0 means that all tuples are equally time-spaced, the gradual

decrease in VarSpacing means that the observations, as time passes, are approaching uniformity in their

time spacing. Because of the number of elements required to compute a standard deviation, VarSpacing has

a value of 0 before 2-82.

The GrowthPerYear at 11-81 results from an increase of 1 over two months, implying a yearly

increase of 6. The value jumps to 15 at 1-82 due to the increment of 4 over the previous two months (an

25

2SS

Ar % %

instantaneous growth of 24 per year). It then generally decreases with time, indicating that yearly yield is

growing more slowly.

Sometimes the result is desired only at certain times, such as the end of the year. If relations such as

yearmarker(YearNumber):

Year from to

1970 1-70 1-71
1971 1-71 1-72
1972 1-72 1-73 C"

are provided, then the following is possible:

range of x is experiment
range of y is yearmarker
retrieve (VarSpacing - varts(x for ever),

GrowthPerYear - avgti(x.Yield per year for ever))
valid at end of y
when true

Example 15: A modification of Example 14.

resulting in the following relation:

VarSpacing GrowthPerYear at "
0.0000 6 12-81 I
0.1764 12.8 12-82

If an analogous monthmarker relation is available, then the following statements

range of x is experiment
range of m is monthmarker
retrieve (VarSpacing - varts(x for ever),

GrowthPerYear - avgti(x.Yield per year for ever))
valid at end of m
where m.MonthNumber mod 3 - 0
when true

Example 16: Example 15 on a quarterly basis.

result in the following relation:

26

, -.. . •. -.•. .. . -.. . '. . . p..)...... .

VarSpacing GrowthPerYear at
0.0000 0 9-81
0.0000 6 12-81
0.2828 14 3-82
0.222 13.2 6-82

0.2033 13 9-82
0.1764 12.8 12-82

2.5. Defaults

Defaults must be chosen carefully to maintain the snapshot reducibility to Quel, thereby allowing

TQuel aggregates to be used in exactly the same way as Quel aggregates. Each default may be overridden

with the explicit use of the clause. There are two places where default clauses may apply: the outer

retrieve statement and within the aggregate. The defaults clauses in the outer retrieve statement without

aggregates was given in (Snodgrass 1987]:

valid from begin of (t Ioverlap ... overlap 1k) to end of (t Ioverlap ... overlap tk)
where true
when t1 overlap -. overlap t

t
as of now

where 11 t are the tuple variables appearing in the query.

When aggregates are included in the query, we must distinguish between the tuple variables appear-

ing inside and outside the aggregate. Tuple variables are included in the default when and valid clauses

only if they appear outside an aggregate. If no tuple variable appears outside an aggregate, the defaults are

valid from beginning to forever
where true
when true
as of now

The following defaults are assumed within each aggregate, and are quite similar to the defaults used

in the outer query.

for each instant
where true
when t overlap ... overlap tk

as of a through 0

where t 1 ... , tk are the tuple variables appearing in the aggregate, and a and 1 are the expressions (or their

defaults) appearing in the retrieval statement itself.

27

• ,,- . , -,- .. .- , , %_. ,. ,>, . , .-. ., ,-.-.,',_% ',' -,'/.,., .'/...-/ 1..,...,.-.. .. , -:. ..--V... .

3. Tuple Calculus Semantics Of TQuel Aggregates

It is convenient to base the semantics of TQuel on the conventional (snapshot) relational database

model, especially because of the available mathematical foundation supporting the latter (Codd 1972].

Thus the semantics of the augmented operations are expressed using traditional tuple calculus notation.

We first review the transformation of the time-specific constructs of TQuel into the tuple calculus,

and briefly give the semantics of the TQuel retrieve statement, which is needed in order to introduce the

semantics of temporal aggregates. This review is a condensation of [Snodgrass 19871. The semantics of

the TQuel aggregates is then developed.
I

3.1. Review of TQuel Semantics

As stated in the overview of TQuel in Section 2, TQuel augments Quel by adding a valid clause to

specify the validity time(s) of tuples, a when clause to specify the relative time ordering of the participating

tuples, and an as-of clause to specify rollback in time.

The semantics makes use of several auxiliary functions: temporal constructor functions that take one

or two intervals and compute an interval, and temporal predicate functions (including overlap) that take P

two intervals and compute a boolean value. All of them are ultimately defined in terms of the predicates

Before and Equal and two functions furst and last.

The temporal predicate 'r in the when clause, containing the precede, overlap, and, or,

and not operations, is transformed into a standard tuple calculus predicate r, containing only the

Before, Equal, A, Y, and --, operations. The valid clause is transformed into the functions 0, and 0.,

each evaluating to an event, and containing the functions first and last. The as-of clause is in fact a special

when clause stating that the transaction times of the underlying tuples must overlap the (constant) interval

specified in the as-of clause. The constants 4b, and 4 represent the endpoints of this interval from the

expressions a and [. As a consequence, the query

28

%°'..'..

range of t is 1R

range of tk in R
retrieve (t,Dj,. ,

valid from u to X
where
when r
as of a through

is translated into the wple calculus statement

; :"{w(r €) I t) " t)

(RI(t) A ...- IRk k)

A w[1] = t,U] A . A w[r]=t .[j,]

Awfr+l]=O,, Aw[r+2j=0 2 A Before(w[r+l, w[r+2])

A w Cr+3] = current transaction time A w [r+4] =

Aiy

A r,

A (1)(1 <l.k)(overlap ([4b,. O), [t, (start], tj (stop])))

The superscript indicates that the tuple w has r explicit attributes and 4 implicit attributes, indicating an

interval relation. The semantics for an event relation is similar, but with only 3 implicit attributes, since the

to time is not present.

EXAMPLE. Example 5. which results in an event relation, has the following tuple calculus semantics,

ignoring transaction time.

29

.. , .< .: -> .,. . .., .. , "-.. . -... .=: .. , * * .. -. .

{W() I afXGf 2)

(Faculty (f) A Faculty (f 2)

Aw(l] =f [Rank)

A w [1+1] = f 2from]

Af [Name] = "Jane" Af 2[Name] = "Merrie" Af 2[Rank] = "Associate"

A overlap (If [from], f [to 1). f 2[from])

3.2. New TQuel Aggregates

Let us specify the semantics of the new aggregates introduced in Section 2.3. Let R be an event rela-

tion of degree r (recall that the degree only concerns the explicit attributes) with n tples, n > 2. These

aggregates all compute a single snapshot tuple of degree r.

DEFINITION.

S Achronorder(R) <== (Vi)(i :1S1) ((t) (R(t) A t = S,))
A Before (Si-I [at]. Si [at])X Si_ (at].Si [at I

where IS I is the length of the sequence S. Each element of S is a full tuple from R, and the elements of S
are ordered by the at times of R. If several tuples in R show identical at times, only one of them is taken
into S. Hence, the length of S is less than or equal to n.Cc lISI-l Si, 1 1 - Si [lI] 1r isi-1 S1+[r] - Sjr] 1
DEFINITION. avgui(R)~ =at 1. 1

151-1 i. I -j a Si.. (a I J IS- 8i 1 S1+1[at -Sj1[a]j

where S = chronorder(R) and ISI > 1. Each attribute of the result tuple equals the average increment
(positive or negative) in the values of the corresponding attribute in R, per unit of time (the default is the
timestamp granularity, defined in Section 2). An optional per clause can be used to specify the time unit
desired; this causes multiplication of the result by a fixed conversion factor. For example, if timestamp
granularity was a millisecond and the user specified "per month" then the computed result is multiplied
by the conversion factor of milliseconds to months (2.592x 10') before being output.

DEFINITION. varts (R) sd(D (R))
mean (D (R))

where D (R) _ < d 1 , ,ds- > such that S = chronorder (R), IS I > 1, implies that
ai) (1 5i :1SI-l Adi =S 1 [atI-S[at]). and mean(X) and sd(X) respectively denote the arithmetic
mean and the arithmetic standard deviation of the real numbers in the set X. Each attribute of the result
tuple equals the variability of the spacing between the at times among the tuples in R. This is in fact the

30

g -;.:- -.-.-.''.-: :.: --. : .? :.: .:.:;..:; . . %% .% % %% % W .. -',= ':"Si

coefficient of variation of the set D (R). Note that rts returns a single value, rather than a tuple.

Observe that mean(D(R)) is never zero since Si[at] and Si.,[at] are distinct. Not necessarily all

tuples from R will make their way into S; S was so defined in order to ensure that avgti or varts will not

attempt a division by zero. Should the user need to specify which of the tuples from R has to be chosen for

the chronological order, one of the other aggregates can be used to create a temporary relation T that con-

tains the relevant tuples, and then avgti or varts may be applied to T.

Let R be an interval relation of degree r, and t be a tuple variable associated with R.

DEFINITION.

*sidev (R)4 72[) -(2 t]2. ~]['L InER . ,ER "tR ,aR

Each component of the result tuple equals the standard deviation of all values in the corresponding com-
ponent of the tuples ofR.

DEFINITION. firstagg (R) A tfin where tp, satisfies the predicate

R (t,,) A (ft) (R (t) A t * if, =c Before (tf[r+l], t [r+l]) Y Equal (tffr+l], t [r+l]))

The result tuple is the tuple whose valid times contain the earliest beginning time of a tuple in R, more
specifically, no other tuple in R began before if,,. If R is empty, tip = (0, 0, 0, a.).

DEFINITION. lastagg (R) _ ti where ti. satisfies the predicate

R (t,) A (Vt) (R (t) At = t = Before (t[r+l], tk,[r+l]) Y Equal (t [r+l], t a1[r+l]))

The result tuple is the tuple whose valid times contain the latest beginning time of a tuple in R, more
specifically, no other tuple in R began after ti.,. If R is empty, tgzn = (0 0,0, .).
The functions firstagg and lastagg directly support the aggregates first and last, respectively.

DEFINITION. earliest (R) A [t,.4. (from], t,.G, [to]) where t,,um satisfies the predicate

R(t.,*.) A (Vt) (R(t) Xt = t =,,>, = Before (t,,.W,[r+l1, [r+1])
Y (Equal ([r+], t[r+l]) A (Before (t,,, [r+2], t(r +21)

Y Equal [r +2], t [r +2]))))

The result is the interval represented by the valid times of the earliest tuple in the relation.

DEFINITION. latest (R) 4 [t (from], tj,,, (to]) where t.,, satisfies the predicate

R (tj.) A (Vt) (R (t) At *t .. , == Before (t[r+1], t .1 [r+1])
Y (Equal (t [r+l], t 1 , [r +J) A (Before (t [r+2], t,,[r+ 2])

Y Equal (t [r+2], t ,[r +2]))))

The result is the interval represented by the valid times of the latest tuple in the relation.

31

u , n % '

3.3. The Constant Predicate

As we have seen. aggregates change their values over time. This will be reflected as different values

of an aggregate being associated with different valid times, even in queries that may look similar to Quel

queries with scalar aggregates, in which no inner when or as-of clauses exist (recall the default clauses

from Section 2.5). In TQue, the role of the external or outer where, when and as of clauses will be simi-

lar to that of the outer where in Quel: they determine which tuples from the underlying relations participate

in the remainder of the query. These selected tuples are combined with the tuples computed from the

aggregation sets to obtain the final output relation.

Aggregates always generate temporary interval relations, even though an aggregated attribute can

appear in an event relation. The interval relation h.s exactly one value at any point in time (for an aggre-

gate function, the interval relation has at most one value at any point in time for each value of attributes in

the by list). It is convenient to determine the points at which the value changes. Let us first define the tie-

pariuton of a set of relations as

T (R k .w)={$ I (-rX(iX(:)

(1<i <k A Ri(r) A(s =r(from]Y s =r[to] Y s =:)

A t-w(t)-=r[o] A Vt', t'> t, t'-w(t > r[to])

where w is an arbitrary function that maps each time t into its aggregation window size, with the single

restriction that w(t+l) 5 w(t)+l. The time-partition brings together all the times s when an aggregate in

which the relations R 1, Rk, mentioned in an aggregate, could change value. These times include the

beginning time of each tuple, the time following the ending time of each tuple, and the time when a tuple

no longer falls into an aggregation window. The window function w is specified in the for clause, for

each instant implies Vt, w(t) = 0; for ever implies Vt, w(t) = -; and for each < time unit>

implies a window size dependent on the timestamp granularity. In the examples, a granularity of month has

been used. Hence, for each month is equivalent to for each instant (Vt, w(t) = 1-1 = 0);

for each quarter implies Vt.w(t)=3-1=2; and for each decade implies V1

32

m - m - - m " -• ilIra - | I

t, w(t)= 120-1 = 119. One is subtracted because the window is inclusive (see Section 2.2). If, however, a

granularity of day is used, for each month, for each quarter, and for each decade

would require non-constant window functions. For example, for each month would require

w (January 31, 1980) = 30 and w (February 28, 1980) = 27.

If two times c and d are neighbors, i.e., in T(R1 Rk, w), the time interval from c to d did not

wimess any change in the set of relations, or in other words, all the relations remained "constant". Define

then the Constant predicate as

Constant (R I .. R, cd, w) <==c> c T (R I. , R. w)
Ad e T(R 1 ..., R ,w)
Ac *d
A Before (c, d)
A Ve)(e r T(R . R, w) => Before (e, c)YEqual (e, c)

V Before (d, e) Y Equal (d, e))

In this predicate, the last line means that there is no event in the time between c and d. The constant predi-

cate will allow us to treat each constant time interval [c, d) separately, thus reducing the inner query to a

number of queries, each dealing with a constant time interval. In other words, we will be able to follow the

same steps as in the snapshot Quel case. For each time interval [c, d) given by the constant predicate a

value of the aggregate, valid from c to d, will be computed and will potentially go into the result. This

value is guaranteed to be unique by the definition of Constant.

EXAMPLE. For the Faculty relation, only for the following values of c and d is the

Constant (Faculty, c, d, 0) predicate true (implying for each instant):

33

-"No

c d -
0 9-71

9-71 9-75
9-75 12-76

12-76 9-77
9-77 11-80

11-80 12-80
12-80 12-82
12-82 12-83
12-83 00

Note that these consecutive intervals ae exactly the ones indicated in Figure 1. For a moving window of

for each quarter, we would use the window function w(t) = 2, resulting in

c d 0
0 9-71 ,.

9-71 9-75
9-75 12-76

12-76 2-77 %
2-77 9-77
9-77 11-80

11-80 12-80
12-80 1-81

1-81 2-81 ,
2-81 12-82 %

12-82 2-83
2-83 12-83

12-83 2-84 -

2-84 00

3.4. Aggregates in the Target List

For a multi-relational query with one aggregate in the target list, we will take the approach used in

the Quel semantics: tuples from the aggregate operation will be computed first via a partitioning function.

Again, let F be any of the aggregate operators defined so far. Consider the TQuel query with one aggre- .

gate function in the target list,

4.

.1*

34

0,
S.

",V
,J',.)'..,..."'.v .",,':" .--.,..' ."-. "" . ".".".".", '"""'" -" "*.-'." -,." "-",. " '"? -- ""SV- .* ".-:

range oft 1 isR,

range of tk is Rk
retrieve (tj .Dj...., ti..Dj,, y = F(t,,D, , by ttD,,. t4 D

for W
where ,V
when ;,
as of a, through))

valid from u to X
where iV
when T
as of athrough

in which

1 _<i <k,..., 1 <i, <k
1: 1 <t <k,..... 1 :5l. <5k

,: lj <1 deg (R,), ..., 1 j, 5 deg (R)
'1 !< m 1:< deg (R, 1:5 m. <5 deg (RI .

As with Quel, the where predicate Ghould refer only to the tuple variable t1 , or the tuple variables appearing

in the by clause. The same restriction holds for the when clause appearing in the aggregate (no tuple vari-

ables are permitted in the as-of clause).

Here, the partitioning function will be based upon the four clauses that modify the aggregate (the by,

where, when, and as-of clauses). Hence, using the same notation as in Section 1.3,

1 P(a 2,... a., c,d)A {b P) I to t..)

2 (Rj,(tt,) A "" A R.(t)

3 A b [1] = t,[1] A ... A b p]= [deg (R.)]

4 Atj,[m] 2=a 2 A 11.[m.] =a.

5 W1"

6 rF ,

7 A (th)(1 <h_n) overlap ([I>,, 0%), [ti.[start], ti°[stop 1))

8 X (Oh)(1 h.n) overlap ([c, d), [ttjfrom], tfto +co'(c)))

9

35

where c and d are valid times, with Before (c, d) and p = (deg (R4) +4 (p includes the implicit auri-
li-1 I 'P

butes of t, only). This definition assumes that the tuple variables tj t, are distinct. If they are not, then

the duplicate tuple variables should be removed. In comparing this with the Quel partitioning function,

notice that there are three additional lines here. Line 6 translates the when clause. Line 7 translates the as-

of clause, specifying that the iransaction times of all tuples of the inner query, including those in the inner

where and when clauses, must overlap the rollback time specified in the as-of clause. This is similar to the

as-of line in the outer query in TQueL The window function o)' in line 8 corresponds to the keyword o

found in the retrieve statement. Line 8 indicates that all tuples participating in the aggregate must overlap

the interval [c, d) (from the definition of the Constant predicate, which will supply the intervals [c, d), it is

not difficult to see that the overlapping is total.) This way, aggregates will always be computed from the

tuples that were valid during that interval. In determining the overlap, the window function W" is used in a

similar fashion to the definition of the time partition. If R4 in line 8 is an event relation, the predicate

should be

overlap ([c, d), [t4[at], t,[at]+Wo)(c)))

The output relation from a query with a single aggregate in the target list is

36,

.:

0

-p.

:36

2 (R 10 1) A..."A RA() A Constant (R,, R4, c, d, o)

3 A (V41)(I!5.i_n)(overlap (fc, d), [tjofrom]. tj[to])))

4 A w[1] = 1j,U] .. A w[rI = ti.j,]

5 A w [r+l] = F (P (t,,[m] ... , 11.[m.), c, d))[m 1]

6 A w [r+2] = last (c, D,) A w [r+3] = first (d, OX) A Before (w [r+2], w [r+3])

7 A w [r +41 = current transaction timte A w [r +5] = o

8

9 r

10 A tl)(151:51) (overlap ([4D,, 00), [t, [start], tj [stop])))

11)}

A comparison with the tuple calculus expression given in Section 3.1 reveals that lines three and five are

new and lines one and six are altered. The Constant predicate determines the interval [c, d) during which

the tuples are constant. It involves the relations appearing in the aggregate; the relation whose attribute is

being aggregated plus all the different relations in the by-list; other relations cannot affect the aggregate.

Again, these relations are assumed to be distinct for notational convenience. The window function co'

appears explicitly as an argument to the Constant predicate and implicitly in P. Line three ensures that the

tuple variables aggregated over and those specified in the by clause overlap with the interval during which

the aggregate is constant. Line five computes the aggregate. Line six ensures that the valid time of the

result relation is the intersection with the specified valid time and the interval [c, d). Two slight

modifications are required for special cases. If the valid at 'u variant is used, line 6 should be replaced

with

w fr+2] = 0, A overlap ([c, d), [w [r +2], w [r +2]+ 1))

Secondly, as with the Quel semantics, if t1 , does not appear outside of the aggregate or in the by clause, it

should also not appear in lines I and 2 (it will appear in the Constant predicate). Also, tuple variables

37

%

mentioned in the aggregate that do not appear outside the aggregate should not appear in line 3.

EXAMPLE. Let us translate Example 6 into the tuple calculus.

P(a2, c.d) {b(3+21 If)

(Faculty (f)

Ab =f

Af [Rank] = a2

A overlap (Cc, d). [f [from],f [to]+0))

A window size of 0 is used because the default is for each Instant. Some instances of the values

of this function are

P(Assistant, 9-71, 9-75) = ((Jane, Assistant, 25000, 9-71, 12-76))

P (Assistant, 9-75, 12-76) = ((Jane, Assistant, 25000, 9-71. 12-76),
(Tom, Assistant, 23000, 9-75, 12-80))

The output relation is
p.

(2+2)I f)ac)ad)

(Faculty (f) X Constant (Faculty, c, d, 0)

X overlap ([c, d), [f Lfrom]. f [to]))

Aw[1] =f [Rank]

A w [2] = count (P (f [Rank], c, d)[Name]

A w (3] = last (c, f [from]) A w (4] = first (d, f [to])A Before (w (3], w [4])

A overlap ([f [from], f [to]), [now, now+l)),)p

The last two lines correspond to the default valid and when clauses. 111III

38

,,, ,.-, ..""'+ ." " , +':'. " ,.,.,', " " "."','(+ P" Z "',',,. ,, .,"+N +'."N,"..; .' ". . . .+ ,+- ." N"-+ .. '. +-':- -"'+" ')';'.J , "-' ? - ' ' : .' ') ' : ' ? ') ': ' . ' -' - . - 'N ? ') -' ' ' 3 ' , ', _ . + ., ,._- •,_ a.

For an aggregate with no by-list, only the where, when, and as-of clauses may be present, and the

partitioning function P becomes again a subset of R,:

(c,d)= fb I) I (R(b)Al 'A r,

A Before (b [start]. <D*) A Before (0,,, b [stop]))

A overlap ([c. d), [b Lfrom 1, b [to]))

The tuple calculus statement for the query remains the same as above, except that P (c, d) is used in place.

of P (t,(m2].... tjm.], c, d) and only R1,, c, and d are needed as arguments to the Constant predicate.

The semantics is changed only slightly if either the underlying or result relations are event relations.

EXAMPLE. This is the tuple calculus version of Example 14 from Section 2.4.

P (c , d) fb (I x) experiment (x)

Xb =x

A overlap ([c, d), [x [from], x [to]+oo))}0
fw (2+1) I ExXc)ad)

(experiment (x) A Constant (experiment, c, d, oo)

A overlap (c, d), [x [at J, x [at l+1))

A w l] = varts(P(c,d)) A w(21 = 119- avgti (P (c, d))[Yield]

A w [3]= x [at] A overlap ([c, d), [w 131, w [3]+1))

,*5

The multiplier of avgti is discussed in Section 2.2. 11111

39

3.5. Unique Aggregation
'a

Unique aggregation is also possible in TQuel. There are four unique aggregates: countU, sumU,

avgU, and stdevU. It is not necessary to define unique versions for any, max, min, first, last,

avgti and varts, because the same results can be obtained with the non-unique aggregates.

As in Quel (c.f., Section 1.4), the semantics of unique aggregation utilizes an additional partitioning

function U defined in terms of the original partitioning function P. When the inner query has a by-list, the

modified partitioning function is defined in terms of the ordinary P as

U(a2, a .,c,d)=ju I Eb)(b L P(a2 . .. a.,c.d)Au[11=b[m)J

With no by-fist, the modified partitioning function U (c, d) is similarly defined from P (c, d). In either

case, only the explicit attributes remain in U; the implicit time attributes are not copied into U. The simple

substitution of U for P in the final tuple calculus statement, together with the use of the non-unique ver-
0

sions of the aggregates, yields the tuple calculus semantics of unique aggregates.

EXAMPLE. The partitioning function for Example 13 is

P(c, d)= (3+21 1 f) •

(Faculty (f)

X~b = f

A Before (f [from],"1981 lfrom])

A overlap ([c , d), If [from],f [to]+0o)

Z

U(c,d)= (1)I Cb)(b - P(cd)Xu[1]=b[Salary]) 111111

%'8

3.6. Multiple Aggregation

A TQuel query may call for several aggregates, some of them instantaneous and some others cumu-

lative, potentially over different window sizes. Of course, each of the aggregates is computed from its own

partitioning functions, using the appropriate window size. The Constant predicate is replaced by a similar 0

40

0,,

" "- - ""::':," " ". : :." ."d "--. "" ' '"

qrwvwlmwv~~7r P WUN '.%1 WCm "V rwsw-.mw .W -W 1.VV v

predicate employing multiple time-partitions Ti, .I!iSn, each associated with one of the n aggregates:

i,lSi nXT j,l~j~n X
C 'E Ti (R 1 Rk, Wl)
X d e Tj (R 1 Rk, Wj)

Ac *d
A Before (c, d)
A (Ve)(V I,1I5Sl n)

(e e T(R ...R, WI) ==D
Before (e, c) Y Equal (e, c) Y Before (d, e) Y Equal (d, e))

Each T, can either range over all of the relations appearing in any aggregate, or can range over only those

relations appearing in the specific aggregate associated with T. When there is only one aggregate, this

predicate is identical to the Constant predicate.

Valid times for each output tuple are computed by following the same approach as before: each out-

put tuple is valid during an interval when tuples from all the non-aggregate attributes are in the [4D,4z)

interval, and this interval overlaps the valid times of the calculated aggregates.

3.7. Aggregates in the Outer Where Clause

TQuel aggregates, or arithmetic expressions containing TQuel aggregates, may be part of the main

where or when clause. Through the partitioning functions, the values of the aggregated attribute are first

computed, then used in place of the aggregate in the predicate of the query. Since the variables in by-lists

are "global", its by clause is linked to the rest of the query, as in Quel.

3.8. Nested Aggregation

In nested aggregation, the local where clause of an aggregate F, invokes another aggregate F 2 . If F 2

has a by-list, links are established between the tuple variables in the by-list of F 2 and the tuple variables in

the F, query. The Constant predicate in the retrieve statement is replaced with the predicate over multiple

time partitions given in Section 3.6.

EXAMPLE. Example 11 contains a nested aggregate. Let us show the partitioning functions P I and P 2 for

the outer and the inner aggregates respectively:

41

.,,4. . r'r • " - -. . -,, €...3.'-... ,-..r .d"r:...'.. ,_ .. . , . . ".

P 1(c,d)- lb(+2) 1 af)(Faculty (f)

Ab =f

A f [Salary I * min(P 2 (C. d))[Salary]

Aoverlap ([c, d). Vf [rom], f [to]+0))

P2(c,d)= (3+2) I f)(Faculty(f)

Ab =f

A overlap ([c, d), If (from],f [to]+0))

The tuple calculus statement for the retrieve statement will contain P 1(c, d); P2(C, d) only occurs within

P iIn this case, both aggregates were for eac-h instant. Different window functions are accommo-..

dated by using the appropriat window function in each partitioning function, and by referencing all win-O

dow functions in the predicate replacing Constant. 11"

3.9. Aggregates in the Other Outer Clauses ,

Two aggregates may be used in the when and valid clauses: earliest and latest. Just like in :,

the case of aggregates in the where clause, an aggregate that is used in the when clause can be modified :

with inner by, for, where, when, and as-of clauses. With these restrictions, the semantics of the aggregated .

temporal constructors is the same as that of the other aggregates. For the linking of tuple variables, the

same comments in sections 3.7 and 3.8 concerning the outer and inner where clause apply. Being based on ,.
first and last (c.f., Section 3.A1), there is no need to define unique versions of the aggregated temporal con-

strUctors.

EXAMPLE. Example 12 illust ates this poin. s tadP ow

42 Ile

P1. n tis ase boh agregteswer fo eah intan. Dffeentwinow fnctonsareaccmmo

date byusig te apropiat widowfuntionin achparitiningfuntio, ad b refreningallwin

m ' .m / , W " ' ,/d o w . % w o . - , . ° - . ." " * . " " " , " " " " " " " ' - " " . . - . " " " - . . " . " f u.ti n s i n t h p e d c a e e p a c g C o s. " -"1 1

P(a 2, c, d) Ab(+ I f) (Faculty(f)

Ab=f

Af [Rank] =a 2

X overlap ([c, d), [f lfrom], f [to]+4a))}
P (Assistanl, 9-71, 9-75) = ((Jane, Assistant, 25000, 9-71, 12-76))

The relation resulting from the query is

{w (2+2) 1 af X~jcXad)

(Faculty (f) A Constant (Faculty, c, d, a,)

A overlap ([c, d), f from], f [to]))

A wll] =f [Name] A w[2] =f [Rank]

A w [3] = last (c , f [from]) A w [4] = first (d , f [to]) A Before (w [3], w [4])

A Before (earliest (P (f [Rank]. c, d))Vfrom], f [from])

A Before (f [from]. earliest (P (f [Rank], c, d))[to])

) I

The fifth line originates from the default valid clause, which in this case is valid from begin of f

to end of f. That the cumulative version of the aggregate was specified in the TQuel query is

reflected in a window size of 0.

4. Related Work

As was mentioned in the introduction, most conventional query languages include support for aggre-

gates. There has also been some formal work on aggregates. Klug introduced an approach to handle aggre-

gates within the formalism of both relational algebra and tuple relational calculus [Klug 1982). His method

makes it possible to define both standard and unique aggregates in a rigorous way. Ceri and Gottlob present

43

prVPW t TW WRJR V P P V *

a translation from a subset of SQL that includes aggregates into relational algebra, thereby defining an

operational semantics for SQL aggregates [Ceri & Gottlob 1985]. Also, significant progress has been made %

in the area of statistical databases [LBL 1981, LBL 1983]. Such databases, used primarily for summary

statistics gathering and statistical analysis, contain set-valued attributes. Klug's relational algebra and'cal-

culus have been extended to manipulate set-valued attributes and to utilize aggregate functions [Ozsoyoglu,

et al. 1986], thereby forming a theoretical framework for statistical database query languages.
I.

Aggregates may also be found in several of the dozen query languages supporting time that have

appeared over the last decade. In some of these languages, aggregates play only a small role. Ben-Zvi r

included several aggregate operators and functions in his TRM language, although not in a very clear or

comprehensive manner [Ben-Zvi 1982]; Ariav also mentioned aggregates in the context of his TOSQL

language (Ariav 1985]. Although Gadia's HTQuel language does not explicitly include aggregates, his

"temporal navigation" operators (e.g., First) can be simulated using aggregates, since they effectively 0

extract an interval from a collection of intervals [Gadia & Vaishnav 1985].

Finally, four other languages supporting time include a comprehensive set of aggregates and associ-

ated constructs. Legol 2.0 was one of the first time-oriented query languages to appear [Jones et al. 1979]. 0

This language is based on the relational algebra. HQuel, an extension of Quel, is based on a model incor-

porating set-valued, time-stamped attributes [Tansel & Arkun 1986]. TSQL is an extension of SQL [IBM
',p

19811 incorporating valid time [Navathe & Ahmed 19861. The operations over the time sequence collec-

tions of the temporal data model (TDM), presented in an SQL-like syntax, include AGGREGATE and

ACCUMULATE statements [Segev & Shoshani 1987].

In the remainder of this section, these three query languages will be compared with Quel and TQuel

against a set of criteria. These eighteen criteria were chosen because they are well-defined, are independent

of any specific query language, and are demonstrably beneficial. Table 1 summarizes the comparison.

44

44 '

S%

Table 1: Comparison of Query Languages Supporting Time

Criterion T~uel Quel -Legol -HQuel TSQL TDM-
Formal Semantics Provided '4 '4 0 0 0 0
Aggregates in Outer Selection '4 4 ?4 4 P
Selection within Aggregates '4 '4 ?4 4 0
Aggregates on Partitions '4 4 ?4 '4 '
Nested Aggregation 4 '4 ?4 4 0
Multiple-relation Aggregates ' 4 4 '4 '4 q
Operational Semantics Provided '4 '4 ''4 0 0
Implementation Exists 0 '4 ? 0 0 0
Unique and Non-unique Aggregation '4 '4 1: ?___ '4
Temporal Partitioning P - 0 0 '4
Temporal Selection Within Agg. Over Valid Time '4 - '4 ?'4 '
Temporal Selection Within Agg. Over Trans. Time '4 - 0 0 03 Z
Aggregates In Outer Temporal Selection '4 - 0 '4%
Instantaneous Aggregates '4 - '4 0 P P

A

Cumulative Aggregates '4 - ''4 '4 4
Moving-window Aggregates '4 - 13 0 '4 ?
Temporally Weighted Aggregates '4 - 03 '4 0 0

1Aggregates over Chronological Order ' 4 ' 4 '

'4 satisfies criterion
P partial compliance
0 criterion not satisfied
?not specified in papers

rinot applicable

These criteria arise from three sources, the first being aspects that apply to most conventional aggre-

gates, and hence should be satisfied by proposed temporal aggregates.

The aggregates should have a formal semantics. Without a formal definition, the meaning of each con-
struct, and the interaction between constructs, is unclear. Only Quel and TQuel aggregates have been for-
mally specified, both in this paper.

Aggregates in the ouer selection should be supported. Quel, TQuel, TSQL and perhaps HQuel (the
feature isn't mentioned in the paper) permit aggregates in the selection construct, in this case, the where
clause. Legal permits aggregates in any expression, including comparisons. TDM permits a very limited
collection of aggregates in the where clause.

I Selection within aggregates should be supported. Quel allows a where clause within an aggregate to
specify a subset of tples over which the aggregate is computed. TQuel also permits such a where clause,
and HQuel may. Legal allows aggregates to be computed over any relational expression. TSQL introduces
a new construct, HAVING, to specify nested selection. TDM doesn't allow a where clause in the AGGRE-
GATE or ACCUMULATE statements.

- Aggregation on partitions should be possible. Quel, TQuel, and HQuel use the by clause, and TSQL and
TDM use the GROUP BY clause, to specify partitioned aggregation. Legl does not include such a con-
StrUCL

*Nested aggregation should be supported. Quel, TQuel, TSQL, Legal, and perhaps HQuel support aggre-
gates whose arguments are themselves aggregates; TDM does not.

- Multiple-relation aggregates should be supported. Quel, TQuel, and HQuel permit several tuple variables
to appear in an aggregate. Legl, TSQL and TDM perform aggregation over arbitrary expressions, thereby
accommodating multiple relations.

4SS

P parial cmpliace A

- not applicable .' ~ A

A~ ''|

Aggregates should have a well-defined operational semantics. By this we mean that a formal temporal
algebra including aggregates should be defined, and a mapping of aggregates in the language to algebraic
expressions should be provided. Kiug showed how aggregates can be handled within the relational algebra
and calculus [Klug 1982]; his approach can be applied to Quel to satisfy this criteria. A temporal relational
algebra has been defined that supports the TQuel aggregates, including aggregales in the target list, inner
where and when clauses, and outer where, when, and valid clauses [McKenzie & Snodgrass 1987A,
McKenzie & Snodgrass 1987B]. A different algebra supports HQuel's aggregates (Tansel 1986]. Legol is
itself an algebra. While an algebra is defined that supports TSQL, this algebra does not include aggregates
IlNavathe & Ahmed 1986]. TDM does not have an equivalent algebra.
- An implementation of the aggregates should exist. Quel aggregates have been implemented in the Ingres
DBMS. An early version of Legol has been implemented, but it is not stated whether aggregates were
implemented in this prototype. No other proposal has been implemented.
- Unique and non-uque aggregation should be supported. The latte is useful to avoid incurring the over-
head of sorting the relation before aggregation to remove duplicates. Quel, TQuel, TSQL, TDM and
perhaps HQuel support both unique and non-unique aggregation. It appears that Legol supports only
unique aggregation.

The second source of evaluation criteria are aspects of conventional aggregates that can be extended

in an obvious fashion to apply to time.

- Temporal partitioning should be supported. This feature, analogous to aggregates partitioned on the expli-
cit attributes, was also first introduced in TSQL via the GROUP BY construct [Navathe & Ahmed 1986].
It is similar to the moving window (see below), except that the window is fixed. TDM has an analogous
GROUP T BY constuct. This feature can be simulated in TQuel by using auxiliary relations, as discussed
in section 2.4. No other query language supports temporal partitioning.
*Temporal selection within aggregates over valid time should be supported. This feature, analogous to

conventional selection within aggregates, is supported in TQuel and TSQL via a when clause thaz specifies
a subset of tuples, based on when the tuples were valid, over which the aggregate is computed. Legol
allows aggregates to be computed over any relational expression. HQuel my, and TDM does, support tern-
pond selection through temporal operators in the where clause.
*Temporal selection within aggregates over transaction time should be supported. While only TQuel sup-

ports this feature, it appears that an as-of clause could be added to the other languages fairly easily
(McKenzie & Snodgrass 1987C].0
*Aggregates in the ouer temporal selection should be supported. Again, this is analogous to supporting%

aggregates in the outer conventional selection. TQuel, TSQL, and Legol support this featue. HQueI does
not include any aggregate operators that operate directly on time stamps. In TDM, AGGREGATE is a
separate statement from SELECT.

The final source of evaluation criteria are previous papers on aggregates that introduce desirable

features. The relative importance of these and other potential features will emerge only with further work

in this area.

- Instantaneous aggregates should be supported. These aggregates yield a distribution on the time axis,
where the value of the aggregate at instant t is computed from tuples valid at time t(Jones et al. 1979].
Both Legol and TQuel support such aggregates. They can be approximated in TSQL and TDM by using a
very small moving window. Instantaneous aggregates cannot be specified in HQuel.
- Cumulative aggregates should be supported. These aggregates compute a value at each time t from tuples
valid at or before time t [Jones et al. 1979). In this comparison we differentiate between strict cumulative
aggregates, as defined by Jones, et al., and moving window aggregates, as defined by Navathe and Ahmed.
TQuel, Legol. TSQL, and TDM support cumulative aggregates. In HQuel, all aggregates are cumulative.

46

N

* Moving-window aggregates should be supported. These aggregates compute a value at each time t from
tuples valid sometime during the specified window interval ending at t [Navathe & Ahmed 1986]. This
feature was originally termed "moving time-window". TQuel and TSQL fully support moving-window
aggregates; TDM may support moving-window aggregates through the GROUP T BY construct; and the
other query languages do not support this language feature.
. Temporally weighted aggregates should be available. Tansel introduced the concept of an average
weighted by the duration of the values [Tansel & Arkun 1986]; the concept was also briefly mentioned
elsewhere [Snodgrass 1982]. TQuel's avgti aggregate serves a similar purpose. The other languages
doe not provide such aggregates.
- Aggregates over the chronological order of tuples should be available. The first and last aggregates of
Legol have been included in the other languages.

In summary, TQuel's aggregates meet all but one criteria (the exception being an implementation),

the other query languages are all lacking in several criteria.

5. Conclusion

This paper makes three contributions. First, a formal semantics for the conventional query language

Quel was presented. This completes the formal definition of Quel (the core of the retrieve statement and the

modification statements were previously formalized [Snodgrass 1987, Ullman 1982]).

Secondly, the aggregates in Quel have been extended in a minimal fashion for inclusion in TQuel.

TQuel added the when and as-of clauses, which are the temporal analogues for valid and transaction time,

respectively, to the where clause. These clauses are permitted within the aggregate. The other syntactic

extension is the for clause, used to distinguish between instantaneous, cumulative, and moving window

aggregates. Additional temporal aggregate operators were also introduced.

Finally, the Quel tuple calculus semantics was extended to accommodate time-varying relations. Our

approach used the Constant predicate and a partitioning function to determine those intervals over which a

relation remains static, enabling the aggregate value to be computed in a conventional manner.

The result is a complete formal semantics for TQuel and its snapshot subset Quel. A complete formal

semantics for no other relational query language, temporal or otherwise, has been defined.

Acknowledgements

We are grateful to Peter Bloomfield for his remarks on the requirements of experimental data in sta-
tistical time series that lead to the creation of the varts operator, and to Ilsoo Ahn, David Beard, and
Juan Valiente for helpful comments on this paper. This work was supported in part by NSF grant DCR-
8402339, by ONR contract N00014-86-K-0680, and by a Junior Faculty Development Award from the
UNC-CH Foundation. The first author was supported in part by an IBM Faculty Development Award. The
third author was sponsored in part by the U.S. Air Force.

47

J&

References

(Ariav 19851 Ariav, G. A Temporally Oriented Data Model. Technical Report. New York University. Mar.
1985.

[Ben-Zvi 19821 Ben-Zvi, J. The Time Relational Model. Ph). Diss. Computer Science Department, UCLA,
1982.

(Ceri & Gotlob 19851 Ceri, S. and G. Gottlob. Translating SQL Into Relational Algebra: Optimization.
Semantics, and Equivalence of SQL Queries. IEEE Transactions on Software Engineering, SE- 11,
No. 4, Apr. 1985, pp. 324-345.

[Codd 1972] Codd, E. F. Relational Completeness of Data Base Sublanguages, in Data Base Systems. Vol.
6 of Courant Computer Symposia Series. Englewood Cliffs, NJ.: Prentice Hall, 1972. pp. 65-98.

[Date 1983] Date, C. J. An Introduction to Database Systems. VoL II of Addison-Wesley Systems Pro-
gramming Series. Reading, MA: Addison-Wesley Pub. Co., Inc., 1983.

[Epstein 19791 Epstein, R. Techniques for Processing of Aggregates in Relational Database Systems.
UCB/ERL M7918. Computer Science Department, University of California at Berkeley. Feb.
1979.

(Gadia & Vaishnav 1985] Gadia, S.K. and J.H. Vaishnav. A Query Language for a Homogeneous Tem-
poral Database, in Proceedings of the ACM Symposium on Principles of Database Systems, Apr.
1985.

[Held et al. 1975] Held, G.D., M. Stonebraker and E. Wong. INGRES--A Relational Data Base Manage-
ment System. Proceedings of the AFIPS 1975 National Computer Conference, 44, May 1975, pp.
409-416.

[IBM 1981] IBM SQLJData-System, Concepts and Facilities. Technical Report GH24-5013-0. IBM. Jan.
1981.

[Jones et al. 1979] Jones, S., P. Mason and R. Stamper. LEGOL 2.0: A Relational Specification Language
for Complex Rules. Information Systems, 4, No. 4, Nov. 1979, pp. 293-305.

[Klug 19821 Klug, A. Equivalence of Relational Algebra and Relational Calculus Query Languages Hav-
ing Aggregate Functions. Journal of the Association of Computing Machinery, 29, No. 3, July
1982, pp. 699-717.

[McKenzie & Snodgrass 1987A] McKenzie, E. and R. Snodgrass. Scheme Evolution and the Relational
Algebra. Technical Report TR87-003. Computer Science Department, University of North Caro-
lina at Chapel Hill. May 1987.

[McKenzie & Snodgrass 1987B] McKenzie, E. and R. Snodgrass. Supporting Valid Time: An Historical
Algebra. Technical Report TR87-008. Computer Science Department, University of North Caro-
lina at Chapel Hill. Aug. 1987.

[McKenzie & Snodgrass 1987C) McKenzie, E. and R. Snodgrass. Extending the Relational Algebra to
Support Transaction Time, in Proceedings of ACM SIGMOD International Conference on
Management of Data, Ed. U. Dayal and I. Traiger. Association for Computing Machinery. San
Francisco, CA: May 1987, pp. 467-478.

[Navate & Ahmed 19861 Navathe, S.B. and R. Ahmed. A Temporal Relational Model and a Query
Language. UF-CIS Technical Report TR-85-16. Computer and Information Sciences Department,

48

A ,_,'..OJ.'; Z.j.' '.,.'r:.'.:/, ,.. .,. ,":.:'':''. '".?,2'"---"'*:-'.'.". "(''":,"". ." ':-"."..0'

University of Florida. Apr. 1986.

[Ozsoyoglu, et al. 1986] Ozsoyoglu, G., Z.M. Ozsoyoglu and V. Matos. Extending Relational Algebra and
Relational Calculus with Set-Valued Attributes and Aggregate Functions. Technical Report.
Department of Computer Engineering and Science, Case Western Reserve University. 1986.

[Segev & Shoshani 1987] Segev, A. and A. Shoshani. Logical Modeling of Temporal Data, in Proceedings
of the SIGMod 1987 Annual Conference, Ed. U. Dayal and 1. Traiger. Association for Computing
Machinery. San Francisco, CA: ACM Press, May 1987, pp. 454-467.

(Snodgrass 1982] Snodgrass, R. Monitoring Distributed Systems: A Relational Approach. PhD). Diss. Com-
puter Science Department, Carnegie-Mellon University, Dec. 1982.

[Snodgrass & Ahn 1986] Snodgrass, R. and I. Ahn. Temporal Databases. IEEE Computer, 19, No. 9, Sep.
1986, pp. 35-42.

[Snodgrass 1987] Snodgrass, R. The Temporal Query Language TQuel. ACM Transactions on Database-
Systems, 12, No. 2, June 1987, pp. 247-298.

[Stonebraker et al. 1976] Stonebraker, M., E. Wong, P. Kreps and G. Held. The Design and Implementa-
tion of INGRES. ACM Transactions on Database Systems, 1, No. 3, Sep. 1976, pp. 189-222.

[Tansel 1986] Tansel, A.U. Adding Time Dimension to Relational Model and Extending Relational Alge- S
bra. Information Systems, 11, No. 4 (1986), pp. 343-355.

(Tansel & Arkun 1986] Tansel, A.U. and M.E. Arkun. HQUEL, A Query Language for Historical Rela-
tional Databases. Technical Report. Bernard M. Baruch College, CUNY. Jan. 1986.

[Ullman 19821 Ullman, J.D. Principles of Database Systems, Second Edition. Potomac, Maryland: Coin-
puter Science Press, 1982.

[LBL 1981] Proceedings of the First International Workshop on Statistical Database Management. Ed.
H.K. Wong. 1981.

(LBL 1983] Proceedings of the Second International Workshop on Statistical Database Management. Ed.
J. McCarthy. 1983.

Appendix: Syntax Summary

In order to accommodate aggregates, the TQuel syntax [Snodgrass 1987] is slightly augmented.

TQuel is a superset of Quel, that is, ali legal Quel statements with aggregates are also legal TQuel state-

ments with aggregates. The following are the additions made to the above mentioned TQuel syntax.

" expression> ::- In addition to the TQuel syntax, include:

I < aggregate term>
< aggregate term> ::= < aggregate op> (< expression> < aggregate tail>

varts (<e-expression> <aggregate tal>
< aggregate tal> ::= < by clause> < for clause> < retrieve tail>

< by clause> ::= e I by < attribute list>

< attribute list> ::= < expression> I < attribute list> , < expression> 0

49

-. '

< aggregate op> count I countU I sumI sumU I avg I avgU I stdev I stdevU

I anyl mini maxi firstl lastl avgti per<timeunit>

< for clause> ::=e I for each < time unit> l for each instant I for ever

< time unit> millisecond I second I minute I hour

I dayl week I month I quarter I year I decadeI .-.

< interval element> In addition to the TQuel syntax, include:

I < aggt> (< i-xpression> < aggregate tail>

< agg> earliest I latest

where < i-expression> evaluates to an interval (i.e., a pair of timestamps) and < e-expression> evaluates to

an event (i.e., a single timestamp).

I

I

* % ~....................-., '% %'%t

4

U LtD

/7/i'? El)
.4.

a.,

"U

"a
'a

U,

U,
aJ

a.
a.

- - - - w w w W W

7
a. ~ a..*;~$~ r-UwP.

... *~a.-\
a -a *a ?~ a~ ~*

'-a .~.

